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Abstract. The Ginzburg-Landau (GL) equations of superconductivity provide a computational model for the
study of magnetic flux vortices in type-II superconductors. In this article it is shown through numerical examples
and rigorous mathematical analysis that the GL model reduces to the frozen-field model when the charge of the
Cooper pairs (the superconducting charge carriers) goes to zero while the applied field stays near the upper critical
field.
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1. Introduction

Superconducting materials hold great promise for technological applications. Especially since
the discovery of the so-called high-temperature superconductors in the 1980s, much research
has been devoted to understanding the behavior of these new materials. While conventional
superconductors require liquid helium (3–4 deg Kelvin) to remain in the superconducting
state, high-temperature superconductors: can be cooled with liquid nitrogen (76 deg Kelvin)
– a clear economic advantage. Unfortunately, high-temperature superconductors are ceramic
materials, which are difficult to manufacture into films and wires, but progress is being made
all the time.

High-temperature superconductors belong to the class of type II superconductors. Unlike
type-I superconductors, type-II superconductors can sustain a magnetic flux in their interior,
but this flux is restricted to quantized amounts–filaments that are encircled by a current. The
current shields the magnetic flux from the bulk, which is perfectly superconducting. The
configuration resembles that of a vortex in a fluid, and the superconductor is said to be in
thevortex state.

Figure 1 gives a sketch of the phase diagram of a type-II superconductor in the neigh-
borhood ofTc, thecritical temperature. The two-dimensional phase space is spanned by the
temperatureT and the (magnitude of the) magnetic fieldH and is roughly divided into three
subregions. Each subregion corresponds to a particular state: the perfectly superconducting
(Meissner) state below the lower critical fieldHc1, where no magnetic field can penetrate the
medium; the normal state above the upper critical fieldHc2, where the superconductor behaves
like a normal metal; and the intermediate vortex state. Above the critical temperatureTc all
superconducting properties are lost.
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Figure 1. Phase diagram of a type-II superconductor.

Figure 2. Vortex configuration in two dimensions.

The vortices, and especially their dynamics, determine the current-carrying capabilities of
a superconductor. Much effort, both experimental and theoretical, is therefore being spent on
the study of vortex dynamics and, especially, mechanisms to inhibit vortex motion when the
superconductor is subject to currents and fields. By ‘pinning’ the vortices, one prevents energy
dissipation and, hence, loss of superconductivity.

Vortices can be studied computation ally at various levels of detail using different models.
The Ginzburg-Landau (GL) model gives a field (continuum) description that, although phe-
nomenological and not based on any microscopic quantum-mechanical theory, has been used
successfully to study both the dynamics and the structure of vortex systems in realistic super-
conductor configurations [1, 2]. Figures 2 and 3 give two examples of computational results
obtained with the GL equations. They illustrate both the effectiveness and the difficulties of
such calculations.
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Figure 3. Kinking-induced motion of vortices through splayed columnar defects.

Figure 2 shows a vortex configuration in a two-dimensional cross section of a twinned su-
perconducting crystal, which was computed from a steady-state solution of the GL equations.
The twin boundary (an irregularity in the structure of the crystal) is visible in the horizontal
line through the center; it acts as a pinning site for the vortices. The field is perpendicular to
the plane of the cross section, which measures 128× 192 coherence lengths (a characteristic
length of the order of microns). Each dot corresponds to a vortex intersecting the plane of the
cross section; the entire configuration has approximately 2,700 vortices. The figure shows the
level of detail one can achieve with the GL model, given sufficient computing power. At the
same time, it illustrates the level of computational complexity one faces if one uses the GL
model.

Figure 3 shows a series of snapshots of a vortex configuration in three dimensions, also
computed with the GL model. The objective of this computation was to simulate vortex motion
through columnar defects and study the potential of the latter as pinning sites. The defects are
visible as twisted straight lines. The vortices are the flexible tube-like structures; they move
from one defect to another under the influence of external forces. The figure shows the motion
of a vortex that is originally pinned on a defect. The vortex develops a loop, the loop peels off,
the loop expands in both directions in a traveling-wave-like scenario, and gradually the entire
vortex transfers to the next available defect.

Numerical simulations provide the only way to study vortex dynamics at this level of detail.
They are an invaluable tool for fundamental research, complementing experiment and theory.
Numerical simulations of realistic superconductors based on the GL model, Uke the ones
illustrated in Figures 2 and 3 are, however, extremely time consuming, and it is desirable to
use simpler models whenever possible. Here, we focus on the ‘frozen-field model’, which is
still a continuum model and the closest approximation to the full GL model. In the frozen-field
model, the superconducting phenomena are decoupled from the electromagnetic field, and the
latter is prescribed through a vector potential. The frozen-field model is much simpler and has
been used successfully for numerical simulations of vortex systems [3].

In this article, we prove that the frozen-field model is obtained as the asymptotic limit of
the GL model when the charge of the Cooper pairs (the superconducting charge carriers) goes
to zero while the applied magnetic field stays near the upper critical field. (The upper critical
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field itself depends on the charge of the Cooper pairs and increases as the latter decreases.)
Because the temperature is constant in the GL model, this limit corresponds to fixing the
temperatureT and moving up vertically through the vortex regime to the curve labeledHc2 in
the phase diagram of Figure 1. The convergence rate is second order in the small parameter.

For more background on the physics of superconductivity we refer the reader to the mono-
graph by Tinkham [4]. The original source for the GL equations of superconductivity is [5].
A good introduction to the mathematics of the GL equations is [6]. The dynamics of the GL
equations have been studied by several authors; see [7, 8, 9] and the references cited therein.
The present investigation is closely related to the work of Du and Gray [10].

Section 2 introduces the Ginzburg–Landau equations, Section 3 contains the numerical
results and Section 4 the analysis.

2. The Ginzburg–Landau equations

In the Ginzburg–Landau theory of superconductivity, the state of a superconducting medium
is described by a complex scalar-valuedorder parameterψ and a real vector-valuedvector
potentialA. If the state varies with time, a third variable – theelectric potentialφ–is necessary
to fully describe the electromagnetic field. The evolution of the state variables is governed by
the time-dependent Ginzburg–Landau (TDGL) equations,
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These equations are supplemented by the boundary conditions,

n · J s = 0, n× (∇ ×A) = n×H . (2.4)

Here,H is theapplied magnetic field, which we assume to be time independent. The constants
ms andqs are the mass and charge, respectively, of a Cooper pair (the superconducting charge
carriers, also referred to as superelectrons);c is the speed of light; and̄h is Planck’s constant
divided by 2π. A Cooper pair is made up of two electrons, each with charge−e (e is the
elementary charge); hence,qs is negative,qs = −2e.

The parametersα andβ are material parameters;α changes sign at the critical temperature
Tc, α(T ) < 0 for T < Tc (superconducting state) andα(T ) > 0 for T > Tc (normal state);β
is only weakly temperature dependent and positive for allT . The remaining parameters areσ ,
the normal state conductivity, andγ , the mobility coefficient. The latter is dimensionless and
related to the diffusion coefficientD, γ = h̄/2msD.

The boundary conditions (2.4) express the fact that superelectrons cannot leave the super-
conductor. Also, if no surface currents are present, the tangential components of the magnetic
field must be continuous across the boundary.

The parametersα andβ are defined phenomenologically, but they can be expressed in
terms of measurable quantities, such as the superconductingcoherence lengthξ and the
Londonpenetration depthλ,
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The coherence length and the London penetration depth define the respective characteristic
length scales for the order parameter and the magnetic induction. Both depend on the temper-
atureT and diverge asT approaches the critical temperatureTc, because of the factor|α|−1/2.
However, their ratio is, to a good approximation, independent of temperature. This ratio is the
Ginzburg–Landau parameter,

κ = λ/ξ. (2.6)

In high-Tc superconductors,κ is of the order of 50–100.
The electromagnetic variables are themagnetic inductionB, thecurrent densityJ , and the

electric fieldE; they are given in terms ofA andφ by the expressions

B = ∇ ×A, J = c

4π
∇ × ∇ ×A, E = −1

c

∂A

∂t
−∇φ. (2.7)

Equation (2.2) is essentially Ampère’s law,J = (c/4π)∇×B, where the currentJ is the sum
of the supercurrentJ s, the transport currentJ t = (c/4π)∇×H , and a ‘normal’ currentJ n =
σE (Ohm’s law). Hence, the GL model uses a quasistatic version of Maxwell’s equations,
where the time derivative of the electric field is ignored.

The TDGL equations were first given by Schmid [11] in 1966 and subsequently derived
from the microscopic theory of superconductivity by Gor’kov and Eliashberg [12]. Our nota-
tion is the same as in Gor’kov and Kopnin [13].

The solution of the TDGL equations is not unique. Any solution(ψ,A, φ) defines a family
of solutionsGχ(ψ,A, φ) parameterized by a sufficiently smooth functionχ of space and time,

Gχ : (ψ,A, φ) 7→
(
ψei(qs/h̄c)χ ,A+∇χ, φ − 1

c

∂χ

∂t

)
. (2.8)

This property is known asgauge invariance; the functionχ is known as agauge function.
Gauge invariance does not affect the physically measurable quantities (the magnetic induc-
tion B, the magnetizationM = B −H , and the current densityJ ). Uniqueness requires an
additional constraint, which is imposed through a gauge choice. The choice of a proper gauge
for the TDGL equations has been a subject of considerable debate. The choice is a matter of
convenience and may depend on the problem under investigation. In this article we adopt a
gauge in which, at any time, the electric potential and the divergence of the vector potential
satisfy the identity

σφ + (c/4π)∇ ·A = 0 (2.9)

everywhere in the domain, whileA is tangential at the boundary. This choice is realized by
identifying the gaugeχ with a solution of the linear parabolic equation

σ

c

∂χ

∂t
− c

4π
1χ = σφ + c

4π
∇ ·A, (2.10)

subject to the conditionn · ∇χ = −n ·A on the boundary. In [9], it was shown that the TDGL
equations, subject to the constraint (2.9), define a dynamical system under suitable regularity
conditions onH . (In the more general case, whereH varies not only in space but also in
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time, the TDGL equations define a dynamical process.) This dynamical system has a global
attractor, which consists of the stationary points of the dynamical system and the heteroclinic
orbits connecting such stationary points. Furthermore, it was shown that every solution on the
attractor satisfies the condition∇ · A = 0 (and, therefore, alsoφ = 0). Thus, in the limit
ast → ∞, every solution of the TDGL equations satisfies the GL equations in the London
gauge.

2.1. NONDIMENSIONAL TDGL EQUATIONS

In this section, we render the TDGL equations dimensionless by choosing units for the inde-
pendent and dependent variables. Since we are interested in the collective behavior of vortices
in the bulk of a superconductor in the limit of weak coupling (qs → 0), we take care to choose
the units in such a way that they remain of order one asqs → 0. (We recall thatqs is negative,
qs = −2e.)

As qs → 0, the coherence lengthξ remains of order one, while the penetration depthλ

increases like|qs |−1; see Equation (2.5). This suggests taking the coherence length as the unit
of length.

To maintain the diffusion coefficientD = h̄/2γms,= ξ2(γ h̄/|α|)−1 at order one, we
measure time in units ofγ h̄/|α|.

The real and imaginary parts of the order parameter are conveniently measured in units of
ψ0 = (|α|/β)1/2, which is the value ofψ that minimizes the free energy in the absence of a
field.

Next, consider the magnetic field. A fundamental quantity in the theory of type-II super-
conductors is the flux quantum80,

80 = hc

|qs | = 2π
h̄c

|qs | . (2.11)

The flux quantum is the unit of magnetic flux carried by a vortex. Together with the coherence
length and penetration depth, it defines three characteristic field strengths: thelower critical
fieldHc1, thethermodynamical critical fieldHc, and theupper critical fieldHc2,

Hc1 = 80

4πλ2 logκ
, Hc = 80

2πξλ√2
, Hc2 = 80

2πξ2
. (2.12)

BelowHc1, a superconductor is in the ideal superconducting (Meissner) state, where it does
not support magnetic flux in the bulk; aboveHc2, it is in the normal state, where the magnetic
flux is distributed uniformly in the bulk; betweenHc1 andHc2, it is in the vortex state, where
magnetic flux is quantized in vortex-like configurations (see Figure 1). The thermodynamical
critical fieldHc is intermediate betweenHc1 andHc2 and is defined by the identityH 2

c /8π =
1
2ψ

2
0 |α|;H 2/8π is the energy per unit volume associated with a fieldH , and 1

2ψ
2
0 |α| is the

minimum condensation energy, which is attained whenψ = ψ0, so these two quantities are
in balance whenH = Hc.

As qs → 0,Hc1 goes to 0 like|qs |,Hc remains of order one, andHc2 grows like |qs |−1.
This suggests that we define field strengths in terms ofHc. In fact, it is convenient to absorb
a factor

√
2, so we adoptHc

√
2 or, equivalently,̄hc/ξλ|qs| as the unit for the magnetic field

strength.
With the coherence length as the unit of length andHc

√
2 as the unit of field strength, it

follows that the vector potential is measured in units ofξHc
√

2. Furthermore, energy densities
are measured in units ofH 2

c /4π , which is the same as|α|ψ2
0.
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Table 1. Nondimensionalization

Independent variables x = ξx′
t = (γ h̄/|α|)t ′

Dependent variables ψ = ψ0ψ
′

A = (ξHc
√
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Normal conductivity σ = (γmsc2/2πh̄)σ ′

Finally, we define the scalar potentialφ in units of(1/γψ2
0κ|qs |)(H 2

c /4π). Notice that this
unit remains of order one asqs → 0, becauseκ|qs | is of order one. On the other hand, the
productqsφ, which represents an energy density, tends to zero asqs → 0. (It remains finite
on the scale of the penetration depth.)

Table 1 summarizes the relations between the original variables and their nondimensional
(primed) counterparts. We adopt the latter as the new variables and work until further notice
on the nondimensional problem. We omit all primes.

The nondimensional TDGL equations are:(
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with the corresponding gauge condition,

σφ +∇ ·A = 0. (2.16)

In deriving Equation (2.14), we have made use of the gauge condition (2.16) and the vector
identity

1A = −∇ ×∇ ×A+∇(∇ ·A). (2.17)

If � is the domain occupied by the superconducting material (measured in units ofξ ), then
Equations (2.13)–(2.16) must be satisfied everywhere�. At the boundary∂� of �, we have
the conditions

n · J s = 0, n× (∇ ×A) = n×H , n ·A = 0. (2.18)
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Here,n is the local unit normal vector.
The electromagnetic variables are given by the expressions

B = ∇ ×A, J = ∇ ×∇ ×A, E = −∂tA− ∇φ. (2.19)

The values of the lower and upper critical fields are

Hc1 = (2κ logκ)−1, Hc2 = κ. (2.20)

2.2. LINK VARIABLES

The combination∇ + (i/κ)A plays a fundamental role; we refer to it as theA-gradient and
write

∇A = ∇ + i

κ
A. (2.21)

TheA-gradient defines theA-Laplacian (or ‘twisted Laplacian’),

∇A = ∇A · ∇A =
(
∇ + i

κ
A

)2

. (2.22)

The relation between theA-Laplacian and the ordinary Laplacian is most easily illustrated by
means of thelink variables,
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)
.

(2.23)

(We omit the argumentt .) The integrals are evaluated with respect to an arbitrary reference
point. EachUµ(µ = x, y, z) is complex valued and unimodular,U ∗µ = U−1

µ . The vectorsA
andU may be used interchangeably. With a slight abuse of notation, we have

U = e(i/κ)
∫
A, ∇A = U ∗∇U, 1A = U ∗1U. (2.24)

3. Numerical solution

A parallel code for solving Equations (2.13)–(2.18) has been developed as part of a project for
large-scale simulations of vortex dynamics in superconductors. Details on these simulations
and on the code will be published elsewhere; here, we give only a brief overview of the nu-
merical methods and the results of numerical simulations showing the behavior of the solution
asκ increases.

The algorithm uses finite differences on a staggered grid, making all approximations ac-
curate to second order in the mesh widths, and an implicit method for the time integration,
making the algorithm (essentially) unconditionally stable. The code, written in C++, has
been designed for a multiprocessing environment; it uses MPI for message passing.



The frozen-field approximation and the Ginzburg-Landau equations of superconductivity229

Figure 4. Computational grid cell and definition of the discrete variables.

We restrict the discussion to rectangular two-dimensional configurations that are periodic
in one direction and open in the other. The configurations are assumed to be infinite in the
third, orthogonal direction, which is also the direction of the applied magnetic field,H =
(0,0,Hz).

3.1. DISCRETIZATION

Computational grid.The computational grid is uniform, with equal mesh sizes in thex andy
directionhx = hy = h. A vertex on the grid is denoted byxi,j = (xi, yj ) and is the point of
reference for the grid cell shown in Figure 4. The indices run through the valuesi = 1, . . . , Nx
andj = 1, . . . , Ny . We assume periodicity in thex, direction and take the grid so the vertices
with j = 1 andj = Ny are located on the open boundary of the superconductor. Thus, the
size of the domain isS = Nx(Ny − 1)h2.
Variables.The discrete variables are introduced so that all derivatives are given by second-
order accurate central-difference approximations. The scalar variablesψ andφ are defined on
the vertices of the grid,

ψi,j = ψ(xi,j ), φi,j = φ(xi,j ). (3.1)

(We use the same symbol for the original field and its discrete counterpart.) Vectors are defined
at the midpoints of the links connecting adjacent vertices,

Ax;i,j = Ax(xi,j + 1
2hxex), Ay;i,j = Ay(xi,j + 1

2hyey). (3.2)

Here,ex and ey denote the unit vectors in thex and y direction, respectively. The defini-
tion of the discrete supercurrentJ s is completely analogous. The link variables, defined in
Equation (2.24), are obtained from the vector potential,

Ux;i,j = e(i/κ)Ax;i,j hx , Uy;i,j = e(i/κ)Ay;i,j hy . (3.3)

They are therefore also defined on the links. Finally, the magnetic inductionB, which is a
vector perpendicular to the plane and given by the curl of the vector potential, is defined at the
center of a grid cell,

Bz;i,j = Bz(xi,j + 1
2hxex + 1

2hyey). (3.4)
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The definition of the discrete variables is also illustrated in Figure 4.
Note that, because of the location of the grid relative to the boundaries, all scalar variables,

as well as thex components of all vectors (Ax,Ux, Js,x, and so forth), are defined on aNx×Ny
grid, whereas they components of all vectors and the magnetic inductionBz are defined on a
Nx × (Ny − 1) grid.
Boundary conditions.We assume periodicity in thex direction, so we need to consider the
boundary conditions (4.7) only aty = y1 andy = yNy .

The boundary condition for the order parameter,n · ∇Aψ = 0, becomes

Uy;i,1ψi,2 − ψi,1 = 0, ψi,Ny − U ∗y;i,Ny−1ψi,Ny−1 = 0, (3.5)

for i = 1, . . . , Nx . For the vector potential, we require that∂yAx = Hz andAy is constant
(Ay = 0) on the boundary.
Operators.The gradient of a scalar is a vector and is therefore defined at the midpoint of a
link connecting two adjacent vertices. Thus,

(∇φ)x;i,j = (∂xφ)(xi,j + 1
2hxex) = h−1

x (φi+1,j − φi,j ), (3.6)

with an analogous definition for they component. The gauge-invariantA-gradient∇A =
∇ + iA is defined in a similar way, with

(∇Aψ)x;i,j = h−1
x (ψi+1,jUx;i,j − ψi,j ). (3.7)

Thus, the discrete version of the twisted Laplacian1A is

(1Aψ)i,j = h−2
x (ψi+1,jUx;i,j − 2ψi,j + ψi−1,jU

∗
x;i−1,j )

+h−2
y (ψi,j+1Uy;i,j − 2ψi,j + ψi,j−1U

∗
x;i,j−1).

(3.8)

The discrete version of the (normal) Laplacian is defined in the usual way,

(1ψ)i,j = h−2
x (ψi+1,j − 2ψi,j + ψi−1,j )+ h−2

y (ψi,j+1 − 2ψi,j + ψi,j−1). (3.9)

The magnetic induction, which is the curl of the vector potential, takes the form

Bz;i,j = h−1
x (Ay;i+1,j − Ay;i,j )− h−1

y (Ax;i,j+1− Ax;i,j ). (3.10)

We also need the divergence of the vector potential, which is given by

(∇ ·A)i,j = h−1
x (Ax;i,j − Ax;i−1,y)+ h−1

y (Ay;i,j − Ay;i,j−1). (3.11)

Algorithm. For numerical purposes, it is useful to treat the TDGL equations (4.3) and (4.4)
as two separate equations, which are coupled only through certain fields and variables. The
electromagnetic potentialsφ andA are treated as static variables in the order parameter
equation,

(∂t − (i/κ)φ)ψ −1Aψ − (1− |ψ |2)ψ = 0. (3.12)

The local nonlinear part of this equation,

(∂t − (i/κ)φ)ψ − (1− |ψ |2)ψ = 0, (3.13)

is integrated in the simplest possible manner,
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ψi,j (t +1t) = e−(i/κ)φi,j1t
{
ψi,j (t)+1t

(
1− |ψi,j |2

)
ψi,j

}
. (3.14)

The nonlocal part,

∂tψ −1Aψ = 0, (3.15)

is integrated by using a backward Euler method, where the linear equation system is solved
with the conjugate gradient method.

The equation for the vector potential,

σ∂tA−1A− (1/κ)J s −∇ ×H = 0, (3.16)

is linear and depends only indirectly on the order parameter through the supercurrent. If we
treat the supercurrent as a static variable, we can integrate the equation easily, again using
the backward Euler method. In the actual implementation, we use the fact that the domain is
periodic to do a fast Fourier transform in thex direction, which leaves us with a tridiagonal
system to solve in they direction. This procedure is considerably faster than using an iterative
method, such as the conjugate gradient method.

3.2. NUMERICAL RESULTS

We use a rectangular sample, periodic in thex direction and open in they direction, with
Nx = Ny = 128. We takehx = hy = 1

2ξ , so the sample measures 64 coherence lengths in
the periodic direction and 63·5 coherence lengths across. (The coherence lengthξ is defined
in (2.5).)

First, we considered this system withκ = 200 and an applied magnetic fieldHz = 0·088κ.
With a relatively large value ofκ, the surface barrier for vortex entry is low, and the system
equilibrates relatively fast [14, 15]. The equilibration required 5× 104 time steps with1t =
0·4. The magnetic field produces an almost perfect vortex lattice. Figure 5 gives a contour plot
of the density of Cooper pairs|ψ |2 at equilibrium; the zeros correspond to the centers of the
vortices.

We then started from the configuration of Figure 5 to find equilibrium configurations for
other values ofκ, varyingκ from κmin = 40 toκmax= 800. In this range, the ground states are
comparable and similar to the one shown in Figure 5. Since the magnetization of a sample is
proportional to 1/κ2, the vortex density decreases withκ; belowκmin, the equilibrium state has
fewer vortices, and a comparison becomes meaningless. Each equilibration required another
3× 104 time steps.

Figure 6 gives the computed values of the quantities

δψ = ‖ψκ − ψκmax‖L2, δBz = ‖Bz,κ − Bz,κmax‖L2

‖Hz‖L2
, (3.17)

for different values ofκ. The data show a behavior like 1/κ2 down toκ ≈ 40.
Figure 7 shows the average overx of Ax,κ − Ax,κmax as a function ofy in the bulk of the

sample, for different values ofκ.
The numerical results show that the solution of the TDGL equations converges asκ in-

creases; in fact, they show quadratic convergence in the small parameter 1/κ. Given the fact
that the Ginzburg–Landau parameter of high-Tc superconducting materials is of the order of
50–100, we conclude that the limiting equation is a practical alternative in many applications.
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Figure 5. Contours of the density of Cooper pairs,|ψ |2, for a system withκ = 200.

Figure 6. The quantitiesδψ (solid squares) andδBz (solid discs) forκ = 40,50,60,70,100,140,400,800. The
straight lines correspond to 1/κ2 behavior.
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Figure 7. The average〈Ax,κ − Ax,κmax〉 vs.y for κ = 40,50,60,70,100,140,400,800.

The question thus becomes: What is the limiting equation, and can we confirm the numerical
conclusions by rigorous arguments? We address this question in the next section.

4. Asymptotic analysis

We now return to the TDGL equations (2.13)–(2.18) and consider their limit asκ → ∞.
These are our standing hypotheses:
(H1) � is bounded inRn(n = 2,3), with a sufficiently smooth boundary∂�, for example,

∂� of classC1,1.

(H2) The parametersκ andσ are real and positive.

(H3) H is independent of time; as a function of position, it satisfies the regularity condition
H ∈ [Wα,2(�)]n for someα ∈ (1

2,1).

(H4) κ � 1;σ = O(1) andH = O(κ) asκ →∞.

The assumptions(H1)-(H3) suffice to prove that the TDGL equations define a dynamical
system in the Hilbert space

W1+α,2 = [W 1+α,2(�)]2× [W 1+α,2(�)]n; (4.1)

see [9]. The spaceW 1+α,2(�) is continuously imbedded inW 1,2(�) ∩ L∞(�), soψ andA
are bounded and differentiable with square-integrable (generalized) derivatives.(H4) is the
operative hypothesis for the asymptotic analysis.
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Table 2. Scaling

Applied Field H = κH ′

Dependent variables ψ = ψ ′
A = κA′
φ = κ−1φ′

Electromagnetic variables B = κB ′
J = κJ ′
E = κE′

4.1. MATHEMATICAL ANALYSIS

Scaling.We begin by scaling the TDGL equations, taking into account the fact that we are
interested in the limit asqs → 0 (weak coupling), when the applied field is near the upper
critical field. The scaling is done by means of the dimensionless GL parameterκ, which grows
like |qs |−1.

SinceH = 0(κ) asκ → ∞, we begin by scalingH by a factorκ,H = κH ′. By scaling
the vector potential by the same factorκ, we achieve that the electromagnetic variables are all
of the same order.

The scalar potential is proportional to the charge density of the Cooper pairs, which is
O(|qs |) asqs → 0. Hence,κφ remains of order one. This suggests scalingφ by a factorκ−1.

Table 2 summarizes the relation between the current (nondimensional) variables and their
scaled (primed) counterparts. We adopt the latter as the new variables and work until further
notice on the scaled problem. We omit all primes.

After scaling, the relevant parameter isκ2, rather thanκ, so we introduceε,

ε = κ−2. (4.2)

The scaled TDGL equations are

(∂t − iεφ)ψ − (∇ + iA)2ψ − (1− |ψ |2)ψ = 0, (4.3)

σ∂tA−1A− εJ s −∇ ×H = 0, (4.4)

where

J s = − 1

2i
(ψ∗∇ψ − ψ∇ψ∗)− |ψ |2A = −Im[ψ∗(∇ + iA)ψ], (4.5)

with the corresponding gauge condition,

εσφ +∇ ·A = 0. (4.6)

The boundary conditions associated with Equations (4.3) and (4.4) are

n · (∇ + iA)ψ = 0, n× (∇ ×A) = n×H , n ·A = 0. (4.7)

The electromagnetic variables are given by the expressions
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B = ∇ ×A, J = ∇ ×∇ ×A, E = −∂tA− ε∇φ. (4.8)

Reduction to homogeneous form.Next, we homogenize the problem. LetA0 be the (unique)
minimizer of the convex quadratic formQ1 ≡ Q1[A],

Q1[A] =
∫
�

[
(∇ ·A)2+ |∇ ×A−H |2] dx, (4.9)

on dom(Q1) = {A ∈ [W 1,2(�)]n : n · A = 0 on∂�}. This minimizer satifies the boundary-
value problem

∇ × ∇ ×A−∇ ×H = 0, ∇ ·A = 0 in�, (4.10)

n× (∇ ×A) = n×H , n ·A = 0 on∂�, (4.11)

in the dual of dom(Q1) with respect to the inner product in[L2(�)]n. The mappingH 7→
A0 is linear, time independent, and continuous from[Wx,2(�)]n to [W 1+α,2(�)]n [16]. The
contribution of the vectorA0 to the magnetic field is

B0 = ∇ ×A0. (4.12)

We substitute variables,

A = A0+ εA′, (4.13)

and rewrite the (scaled) TDGL equations (4.3)–(4.7) in terms ofψ andA′ (omitting the
primes),

∂tψ + iσ−1(∇ · (εA))ψ − (∇ + i(A0+ εA))2ψ − (1− |ψ |2)ψ = 0 in�, (4.14)

σ∂tA−1A− J s = 0 in �, (4.15)

where

J s = − 1

2i
(ψ∗∇ψ − ψ∇ψ∗)− |ψ |2(A0+ εA), (4.16)

and

n · ∇ψ = 0, n× (∇ ×A) = 0, n ·A = 0 on∂�. (4.17)

Functional formulation.We reformulate the system of Equations (4.14)–(4.17) as an or-
dinary differential equation for a vector-valued functionu = (ψ,A) from the time domain
(0,∞) to a space of functions on�,

u = (ψ,A) : [0,∞)→ L2 = [L2(�)]2× [L2(�)]n. (4.18)

The equation is

du

dt
+ Au = f0(u)+ εf1(u), (4.19)

whereA is the linear operator inL2 associated with the quadratic formQ ≡ Q[u],
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Q[u] =
∫
�

[|∇ψ |2+ σ−1
(
(∇ ·A)2+ |∇ ×A|2)] dx, (4.20)

on dom(Q) = {u = (ψ,A) ∈ L2 : n ·A = 0 on∂�}. The functionsf0 andf1 are nonlinear,

fi(u) = (ϕi(ψ,A), σ−1F i (ψ,A)), i = 0,1, (4.21)

where

ϕ0(ψ,A) = 2iA0 · (∇ψ)− |A0|2ψ + (1− |ψ |2)ψ, (4.22)

ϕ1(ψ,A) = i(1− σ−1)(∇ ·A)ψ + 2iA · (∇ψ)− (A0 ·A)ψ − |A|2ψ, (4.23)

F 0(ψ,A) = 0, (4.24)

F 1(ψ,A) = − 1

2i
(ψ∗∇ψ − ψ∇ψ∗)− |ψ |2(A0+ εA). (4.25)

Given anyf = (ϕ, σ−1F ) ∈ L2, the equationAu = f is equivalent with the system of
uncoupled boundary-value problems

−1ψ = ϕ in �, n · ∇ψ = 0 on ∂�, (4.26)

−1A = F in �, n×A = 0, n ·A = 0 on∂�. (4.27)

in the dual of dom(Q)with respect to the inner product inL2. The operatorA is selfadjoint and
positive definite inL2; hence, its fractional powersAθ/2 are well defined, they are unbounded
if θ ≥ 0, and dom(Aθ/2) is a closed linear subspace ofW θ,2 = [Wθ,2(�)]2× [Wθ,2(�)]n; see
[17, Section 1.4].

The solution of (4.19) depends onε; we denote it byuε. We compareuε with the solution
u0 of the reduced equation

du

dt
+ Au = f0(u). (4.28)

Theorem 4.1There exists a positive constantC such that

‖uε(t)− u0(t)‖W1+α,2 ≤ C(‖uε(0)− u0(0)‖W1+α,2 + ε), t ∈ [0, T ]. (4.29)

Proof. let BR be the ball of radiusR centered at the origin inW1+α,2. Let uε ∈ BR and
u0 ∈ BR satisfy Equations (4.19) and (4.28), respectively, with initial datauε(0) andu0(0).
The differencev = uε − u0 satisfies the differential equation

dv

dt
+ Av = f0(uε)− f0(u0)+ εf1(uε) (4.30)

or, equivalently, the integral equation

v(t) = e−tAv(0)+
∫ t

0
e−(t−s)A[f0(uε)− f0(u0)+ εf1(uε)](s) ds. (4.31)

From the integral equation we obtain the estimate
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‖v(t)‖W1+α,2 ≤ ‖e−tA‖W1+α,2‖v(0)‖W1+α,2 +
∫ t

0
‖A(1+α)/2e−(t−s)A‖W1+α,2

×[‖f0(uε)− f0(u0)‖L2 + ε‖f1(uε)‖L2](s) ds.

(4.32)

The operator norms satisfy the inequalities

‖e−tA‖W1+α,2 ≤ 1, ‖A(1+α)/2e−(t−s)A‖W1+α,2 ≤ C(t − s)−(1+α)/2; (4.33)

see [17, Theorem 1.4.3]. Furthermore, adding and subtracting terms, we have

f0(uε)− f0(u0) =
(
2iA0 · (∇(ψε − ψ0))− |A0|2(ψε − ψ0)

+(1− |ψε|2− |ψ0|2)(ψε − ψ0)− ψεψ0(ψ
∗
ε − ψ∗0),0

)
,

(4.33)

where

‖2iA0 · (∇(ψε − ψ0))‖L2 ≤ 2‖A0‖L∞‖ψε − ψ0‖W1,2

≤ C‖ψε − ψ0‖W1+α,2 ≤ C‖uε − u0‖W1+α,2,

‖|A0|2(ψε − ψ0)‖L2 ≤ C‖A0‖2L∞‖ψε − ψ0‖L∞
≤ C‖ψε − ψ0‖W1+α,2 ≤ C‖uε − u0‖W1+α,2,

and the other terms are estimated similarly. Here,C is some (generic) positive constant, which
may depend onH and� but not onuε oru0. (In these inequalities we have used the continuity
of the imbedding ofW 1+α,2 intoW 1,2 ∩ L∞.) The result is an inequality of the type

‖f0(uε)− f0(u0)‖L2 ≤ C‖uε − u0‖W1+α,2, (4.35)

showing thatf0 is Lipschitz fromW1+α,2 to L2.
Using similar estimates, we show thatf1 is bounded fromW1+α,2 to L2, so there exists a

positive constantC such that

‖f1(uε)‖L2 ≤ C. (4.36)

Combining the estimates (4.33), (4.35), and (4.36) with the inequality (4.32), we conclude
that there exist positive constantsC1 andC2 such that

‖v(t)‖W1+α,2 ≤ ‖v(0)‖W1+α,2 + εC1t
(1−α)/2+ C2

∫ t

0
(t − s)−1+α)/2‖v(s)‖W1+α,2 ds. (4.37)

Applying Gronwall’s inequality, we obtain the estimate

‖v(t)‖W1+α,2 ≤ C(‖v(0)‖W1+α,2 + ε), t ∈ [0, T ], (4.38)

for some positive constantC. �
It follows from Theorem 4.1 that, if the initial data are such that‖uε(0) − u0(0)‖W1+α,2 =

o(1) asε ↓ 0, then

lim
ε→0

uε = u0 (4.39)

in C([0, T ];W1+α,2) for anyT > 0. In particular, if‖uε(0) − u0(0)‖W1+α,2 = O(ε), then the
convergence in Equation (4.39) isO(ε).
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4.2. INTERPRETATION AND FINAL REMARKS

It remains to translate the results hack in terms of the original variables. We denote the solution
of the TDGL equations, Equations (2.13)–(2.18), byψκ,Aκ, φκ . The variablesAκ andφκ are
related by the gauge conditionσφκ +∇ ·Aκ = 0 at all times. LetBκ = ∇ ×Aκ .

LetA∞ be the solution of the boundary-value problem

∇ × ∇ ×A−∇ ×H = 0, ∇ ·A = 0 in�, (4.40)

n× (∇ ×A) = n×H , n ·A = 0 on∂�, (4.41)

and putB∞ = ∇×A∞. The vectorA∞ and, hence,B∞ do not vary with time. Letψ∞ satisfy
the equations

∂tψ −1A∞ψ − (1− |ψ |2)ψ = 0 in �, n · ∇A∞ψ = 0 on ∂�. (4.42)

Then it follows from Theorem 4.1 that there exists a positive constantC such that

‖ψκ(t)− ψ∞(t)‖W1+α,2 + ‖Bκ (t)− B∞‖Wα,2

‖H‖Wα,2
(4.43)

≤ C
(
‖ψκ(0)− ψ∞(0)‖W1+α,2 + ‖Bκ(0)− B∞‖Wα,2

‖H‖Wα,2
+ 1

κ2

)
, (4.44)

for all t ∈ [0, T ], T > 0.
The approximation(ψ∞,B∞) is the ‘frozen-field approximation’. Hence, the analysis

shows that the solution of the TDGL equations converges to the frozen-field approximation,
uniformly on compact time intervals,[0, T ] in the topology of[W 1+α,2(�)]2×[Wα,2(�)]n, as
soon as the initial data satisfy the asymptotic estimates‖ψκ(0) − ψ∞ (0)‖W1+α,2 = 0(1) and
‖Bκ(0)−B∞‖Wα,2 = 0(κ) asκ →∞. Under slightly sharper conditions we obtain the order
of convergence.

Corollary 4.1. If

‖ψκ(0)− ψ∞(0)‖W1+α,2 = O
(

1

κ2

)
and

‖Bκ(0)− B∞‖Wα,2

‖H‖Wα,2
= O

(
1

κ2

)
asκ →∞, then

‖ψκ(t)− ψ∞(t)‖W1+α,2 + ‖Bκ (t)− B∞‖Wα,2

‖H‖Wα,2
= O

(
1

κ2

)
, (4.45)

uniformly on compact intervals.
This result explains the numerical results presented in Section 3.
Remark 1.The asymptotic approximation procedure can be continued to higher order, as

can be seen from a formal expansion. The equations for the order parameter and the vector
potential decouple, and at each order one finds first the vector potential, then the order para-
meter. The vector potential satisfies a linear heat equation; for example, the first correction
beyondA∞ is κ−1A whereA satisfies the equation

−σ∂tA+1A = Im[ψ∗∞∇A∞ψ∞]. (4.46)
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Remark 2.The analysis given here differs at several points from the analysis of Ref. [10].
First, our scaling is slightly different and, we believe, more in tune with the physics; second,
our regularity assumptions on the applied field are weaker; third, our proofs are more direct;
and fourth, our results hold in a stronger topology.

5. Conclusion

In this article we have been concerned with the Ginzburg-Landau (GL) equations of super-
conductivity – a set of coupled nonlinear partial differential equations for a complex-valued
order parameter and a vector-valued vector potential describing the state of a superconducting
medium. The GL equations, although phenomenological, constitute the only model to study
the dynamics and structure of magnetic-flux vortices in type-II superconductors. They have
been used successfully to study, for example, potential-pinning mechanisms and structures of
moving vortex lattices.

Numerical simulations of realistic superconductor configurations are, however, extremely
time-consuming, and it is certainly desirable to use simpler models wherever possible. One
such model is the ‘frozen-field approximation’, where one assumes that the vector potential,
and thus the electromagnetic field, is given. One is thus left with an equation for the order
parameter, whose solution yields the superconducting properties for the material in the given
electromagnetic field.

The frozen-field model has been used in the past with some success, but its relation to the
GL equations has neverbeen explained satisfactorily. The purpose of this article was to justify
the frozen-field model as an asymptotic limit of the GL model. We have shown that the former
follows from the latter in the limit when the charge of the Cooper pairs (the superconducting
charge carriers) goes to zero while the applied field stays near the upper critical field. The
convergence is, in fact, quadratic in the small parameter. The analysis thus confirms the va-
lidity of the frozen-field approximation, establishes its domain of applicability, and indicates
possible refinements.

Numerical simulations based on the frozen-field approximation are far less demanding of
computing resources than the full set of GL equations. Although we have not presented hard
numbers here, reductions by an order of magnitude are common. While the solution of the GL
equations easily takes of the order of a hundred hous on a massively parallel computer like
the IBM SP, and parameters studies with the GL model are still prohibitively expensive, the
frozen-field approximation offers an excellent alternative for prototype simulations provided,
of course, the conditions for its applicability are met. The asymptotic analysis presented here
should be useful in that determination.
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